import mplfinance as mpf
import yfinance as yf
from wallstreet import get_daily_returns, get_ytd_growth_percentage, get_moving_averages, get_relative_strength
import pandas as pd
from datetime import datetime
import warnings
warnings.filterwarnings('ignore')
datetime.now()
datetime.datetime(2023, 2, 3, 15, 46, 53, 999542)
pd.options.display.float_format = '{:.2f}'.format
symbol = 'ptlo'
week = '2022-03-18'
n = 10
# Parameters
symbol = "tsla"
week = "2022-03-18"
n = 50
symbol = symbol.upper()
n = n * -1
get_daily_returns([symbol]).set_index('ticker').transpose()
ticker | TSLA |
---|---|
name | |
previous_close | 188.27 |
current_price | 189.98 |
percent change | 0.91 |
today_volume | 229.18 |
previous_volume | 217.45 |
get_ytd_growth_percentage([symbol]).set_index('ticker').transpose()
ticker | TSLA |
---|---|
name | |
growth | -46.07 |
mav = get_moving_averages(symbol)
mav[-5:]
[*********************100%***********************] 1 of 1 completed
Open | High | Low | Close | Adj Close | Volume | SMA8 | SMA21 | SMA30 | SMA200 | RSI | |
---|---|---|---|---|---|---|---|---|---|---|---|
Date | |||||||||||
2023-01-30 | 178.05 | 179.77 | 166.50 | 166.66 | 166.66 | 230878800 | 149.69 | 131.22 | 131.97 | 232.16 | 56.88 |
2023-01-31 | 164.57 | 174.30 | 162.78 | 173.22 | 173.22 | 196813500 | 155.44 | 133.67 | 132.49 | 231.32 | 59.01 |
2023-02-01 | 173.89 | 183.81 | 169.93 | 181.41 | 181.41 | 213806300 | 161.44 | 136.44 | 133.53 | 230.59 | 61.51 |
2023-02-02 | 187.33 | 196.75 | 182.61 | 188.27 | 188.27 | 217448300 | 167.01 | 140.26 | 134.81 | 229.85 | 63.47 |
2023-02-03 | 183.95 | 198.99 | 183.69 | 189.98 | 189.98 | 229175706 | 172.77 | 143.90 | 136.55 | 229.09 | 63.95 |
mas = [mpf.make_addplot(mav[n:]['SMA8'], color='green', linestyle='dashed', width=1),
mpf.make_addplot(mav[n:]['SMA21'], color='blue',
linestyle='dashed', width=1),
mpf.make_addplot(mav[n:]['SMA30'], color='orange',
linestyle='dashed', width=1),
]
if ('SMA200' in mav.keys()):
mas.append(mpf.make_addplot(mav[n:]['SMA200'], color='red', linestyle='dashed', width=1))
mpf.plot(mav[n:], type='candle',style='charles',title='\n{}'.format(symbol),volume=True,addplot=mas,figscale=1.1,figratio=(3,2))
e = yf.Ticker(symbol)
hist = e.history(period='60d', interval='1d')
# Valid intervals: [1m, 2m, 5m, 15m, 30m, 60m, 90m, 1h, 1d, 5d, 1wk, 1mo, 3mo]
# expiration weeks
exp_weeks = pd.DataFrame(e.options, columns=['weeks'])
# exp_weeks
hlines=None
if week in exp_weeks.weeks.values:
opt = e.option_chain(week)
c_asset = pd.DataFrame(opt.calls, columns=['strike', 'volume','openInterest', 'impliedVolatility'])
call_strike = c_asset[c_asset.openInterest == c_asset.openInterest.max()].set_index('strike').index[0]
p_asset = pd.DataFrame(opt.puts, columns=['strike', 'volume','openInterest', 'impliedVolatility'])
put_strike = p_asset[p_asset.openInterest == p_asset.openInterest.max()].set_index('strike').index[0]
hlines = dict(hlines=(put_strike, call_strike), colors=('r','g','b','b'), linewidths=(1,1),linestyle='dashed')
# Settings
kwargs = dict(figscale=1.1,figratio=(8,4),
volume=True,volume_panel=2,panel_ratios=(7,2,2) , mav=(8,21,30))
exp12 = hist['Close'].ewm(span=12, adjust=False).mean()
exp26 = hist['Close'].ewm(span=26, adjust=False).mean()
macd = exp12 - exp26
signal = macd.ewm(span=9, adjust=False).mean()
histogram = macd - signal
currentPrice = hist[-1:].set_index('Close').index[0]
apds = [#mpf.make_addplot(exp12,color='lime'),
#mpf.make_addplot(exp26,color='c'),
mpf.make_addplot(histogram,type='bar',width=0.4,panel=1,
color='blue',alpha=1,secondary_y=False),
mpf.make_addplot(macd,panel=1,color='green',secondary_y=True),
mpf.make_addplot(signal,panel=1,color='purple',secondary_y=True),
]
# mpf.plot(hist,type='candle',style='yahoo',addplot=apds,**kwargs,hlines=hlines)
if hlines:
title = '\n{} {:.2f} \nOptions Open Interest Walls\n Exp Date: {} Call: {:.2f} Put: {:.2f}'.format(symbol, currentPrice, week, call_strike, put_strike)
mpf.plot(hist,type='candle',style='default',addplot=apds,**kwargs,hlines=hlines,title=title)
else:
title = '\n{} {:.2f} \n'.format(symbol, currentPrice)
mpf.plot(hist,type='candle',style='default',addplot=apds,**kwargs,title=title)
Disclaimer: I am not a professional investment adviser and my opinions are based on my own technical analysis. Please consult an investment professional before making investment decisions.